Current Issue : July-September Volume : 2023 Issue Number : 3 Articles : 5 Articles
Generic medications are bioequivalent to brand-name medications, but the quality and purity of generic medications are still debatable. The aim of this study was to compare the generic product of metformin (MET) to its branded counterpart using pure MET powder as a reference. Quality control tablet assessment and in vitro evaluation of drug release were carried out in various pH media. Additionally, several analytical methods and thermal techniques were used, namely differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and confocal Raman microscopy. The results showed a significant difference between the two products. In terms of friability assessment, mean resistance force, and tablet disintegration, the generic MET product showed significant weight loss, higher mean resistance force, longer disintegration time, and a slower rate of drug release. In addition, DSC and TGA showed that the generic product had the lowest melting point and the least weight loss compared to the branded product and pure powder. XRD and SEM demonstrated some changes in the crystallinity structure of the molecule particles for the generic product. Additionally, FTIR and confocal Raman revealed the same peaks and band shifts in all samples, but with differences in the intensity for the generic tablet only. The observed differences could be due to the use of different excipients in the generic product. The possibility of forming a eutectic mixture between the polymeric excipient and metformin in the generic tablet was presumed, which might be attributed to alterations in the physicochemical properties of the drug molecule in the generic product. In conclusion, using different excipients might have a significant effect on the physicochemical properties of drugs in generic formulations, leading to significant changes in drug release behavior....
Since its introduction to the market in the 1970s, ketoprofen has been widely used due to its high efficacy in moderate pain management. However, its poor solubility and ulcer side effects have diminished its popularity. This study prepared forms of ketoprofen modified with three basic excipients: tris, L-lysine, and L-arginine, and investigated their ability to improve water solubility and reduce ulcerogenic potential. The complexation/salt formation of ketoprofen and the basic excipients was prepared using physical mixing and coprecipitation methods. The prepared mixtures were studied for solubility, docking, dissolution, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), in vivo evaluation for efficacy (the writhing test), and safety (ulcerogenic liability). Phase solubility diagrams were constructed, and a linear solubility (AL type) curve was obtained with tris. Docking studies suggested a possible salt formation with L-arginine using Hirshfeld surface analysis. The order of enhancement of solubility and dissolution rates was as follows: L-arginine > L-lysine > tris. In vivo analgesic evaluation indicated a significant enhancement of the onset of action of analgesic activities for the three basic excipients. However, safety and gastric protection indicated that both ketoprofen arginine and ketoprofen lysine salts were more favorable than ketoprofen tris....
The choice of optimum composition of a mixture of binary and ternary excipients for optimum compressional properties was investigated in this work. Excipients were chosen based on three types of excipients: plastic, elastic, and brittle fracture. Mixture compositions were selected based on a one-factor experimental design using the response surface methodology technique. Compressive properties comprising Heckel and Kawakita parameters, work of compression, and tablet hardness were measured as the main responses of this design. The one-factor RSM analysis revealed that there exist specific mass fractions that are associated with optimum responses for binary mixtures. Furthermore, the RSM analysis of the ‘mixture’ design type for the three components revealed a region of optimal responses around a specific composition. The foregoing had a mass ratio of 80:15:5 for microcrystalline cellulose: starch: magnesium silicate, respectively. Upon comparison using all RSM data, ternary mixtures were found to perform better in compression and tableting properties than binary mixtures. Finally, the finding of an optimal mixture composition has proven effective in its applicability in the context of the dissolution of model drugs (metronidazole and paracetamol)....
Background. Tablets are still the most preferred means of drug delivery. The search for new and improved direct compression tablet excipients is an area of research focus. This is because the direct compression method overcomes the drawbacks of granulation methods of tablet production. It exempts several treatment steps associated with the granulation methods. The requirements for the powders to be directly compressible include flowability, low friction tendency, compressibility, and fast disintegration capacity. Taro Boloso-I is a new variety of Colocasia esculenta (L. Schott) yielding 67% more than a previously reported variety (Godare) in Ethiopia. This study is aimed at enhancing the flowability while keeping the compressibility and compactibility of the pregelatinized Taro Boloso-I starch. Methods. Central composite design was used for the optimization of two factors which were the temperature and duration of pregelatinization against 4 responses. The responses were angle of repose, Hausner’s ratio, Heckel’s yield pressure, and tablet breaking force. Results and Discussions. An increase in the temperature resulted in decrease in both the angle of repose and the Hausner ratio and that of time decreased angle of repose as well. The Heckel yield pressure was observed to increase with increasing levels of both temperature and time. The pregelatinized starch prepared by heating 15% slurry of Taro Boloso-I starch at the pregelatinization temperature of 66.22°C for 20 min showed desired flow property and compressibility. Conclusions. Pregelatinized Taro Boloso-I starch could be regarded as a potential direct compression excipient in terms of flowability, compressibility, and compactibility. The PGTBIS could perform better as filler and binder in direct compression tablets than the Starch 1500® in terms of compactibility....
The extraction method of edible Allanblackia floribunda seed butter is crucial for preserving its constituents. The objective of the present study was to investigate the effects the extraction methods have on the physicochemical properties of A. floribunda butter regarding its potential use as a pharmaceutical excipient. Butter obtained from different extraction methods (including solvent/ hexane, cold press, and traditional/hot water) was analyzed for its physicochemical properties such as yield, melting point, relative density, refractive index, moisture content, pH, acid value, saponification value, percentage of free fatty acids, and iodine value as well as beneficial elements and pathogenic microorganisms. All physicochemical parameters were within the standard limits for edible and industrial oils/butter (Codex Stan 210-1999) and were free from pathogenic microorganisms. However, the pH value of all extracts was higher than that of olive oil. The moisture content was higher in the water and hexane extracts compared to the cold-pressed ones. The hexane extract had higher mineral content (calcium, sodium, magnesium, potassium, and iron) than the cold press and hot water extracts. Extraction with hexane gave the highest yield. The identified fatty acids in all extracts are palmitic and stearic (saturated fatty acids), oleic, linoleic, and linolenic (polyunsaturated fatty acids) acids. Based on the physicochemical analysis, A. floribunda seed butter is edible and has the potential as a pharmaceutical excipient in drug delivery....
Loading....